# SEASONAL VARIATIONS OF AIRBORNE FUNGI ABOVE BANANA FIELDS IN QENA, UPPER EGYPT

Ahmed H.M. EL-SAID and Sobhy I.I. ABDEL-HAFEZ

Botany Department, Faculty of Science, Qena, Assiut University, Egypt

ABSTRACT - The "exposed plate" method was used to trap fungal spores from the atmosphere of Qena over a period of one year (January-December 1992). 78 species and 2 varieties belonging to 38 genera developed on plates of glucose and cellulose-Czapek's agar at 28°C. Counts of airborne fungi on glucose and cellulose agar plates showed seasonal trends with peaks in December and November 1992, respectively. Most common genera were Acremonium, Alternaria, Aspergillus, Cladosporium, Cochliobolus, Curvularia, Fusarium, Gibberella, Memoniella, Mycosphaerella, Myrothecium, Nectria, Penicillium and Setosphaeria. Best counts of fungi were estimated during different months.

### INTRODUCTION

Banana is very important crop at Qena because it is cultivated in large areas in upper Egypt. Several fungal diseases of plants and human beings are conveyed by air. Deterioration of stored materials and spoilage of foodstuffs is induced by growth of saprophytic fungi through aerial contamination. Numerous investigations have been carried out on airspora in many parts of the world. Recent investigations were conducted by Vittal & Krishnamoorthi 1981, 1988; Moubasher *et al.*, 1981, 1988; Mazen & Shaban, 1983; Lighthart, 1984; Banerjee *et al.*, 1987; Abdel-Hafez & El-Said, 1989; Abdel-Hafez *et al.*, 1990. The present work aims to study composition, number, frequency of occurrence and seasonal variations of fungi in the atmosphere of Qena (Upper Egypt).

## MATERIAL AND METHODS

The "exposed plate" method was used to estimate airborne fungi from the atmosphere of banana fields at Qena, over a period of one year (January-December 1992). Ten plates (9 cm diam.) were used: 5 plates for each type of medium for each air sample. Glucose - and cellulose - Czapek's agar were used for isolation of glucophilic and cellulose-decomposing fungi, respectively. Rose bengal (1/30000) and chloramphenicol (0.05 mg/ml) were added as bacteriostatic agents (Smith & Dawson, 1944; Al-Doory, 1980). Plates were exposed at 10 a.m. every 15 days for one min., about 40 cm above banana level. Plates were incubated at 28°C for 7-10 days and developing colonies counted "colony forming units" and identified (purely morphological, based on macro- and microscopic characteristics). Numbers were recorded monthly per 10 plates in 2 exposures of one min. each and calculated totally per 240 plates in 48 exposures of one min. each. Relative humidity and temperature values were recorded during the observation period.

## **RESULTS AND DISCUSSION**

Average temperature of the atmosphere at Qena during January-December 1992 fluctuated between 10-13°C. Maximum record was in August and minimum in January. Relative humidity of the air ranged between 50-73% with the highest value obtained during January and the minimum in April (Fig. 1).

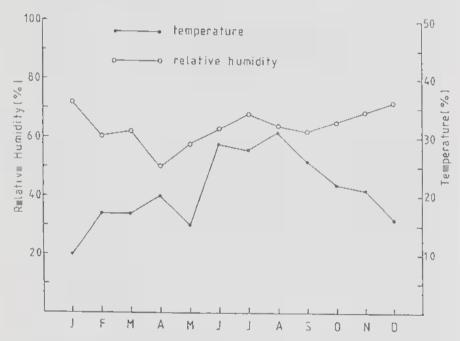



Fig. 1 - Monthly temperature and relative humidities of the air over banana plant during the periods January-December 1992.

### Mesophiles recovered on glucose-Czapek's agar:

70 species and 1 species variety belonging to 32 genera were collected on 1% glucose-Czapek's agar at 28°C (Table 1). Total numbers of colonies developing the air of banana field on 240 plates of glucose were 2240. Monthly counts of colonies irregularly fluctuated with peaks in December (Fig. 2). Moubasher & Moustafa (1974) and Moubasher *et al.* (1981) found highest incidences of airborne fungi in Assiut and Qena Governorates in spring and autumn. However Moubasher *et al.* (1988) obtained peaks of fungal spores from Wadi Bir-El-Ain in September 1978 and October 1979. Also,

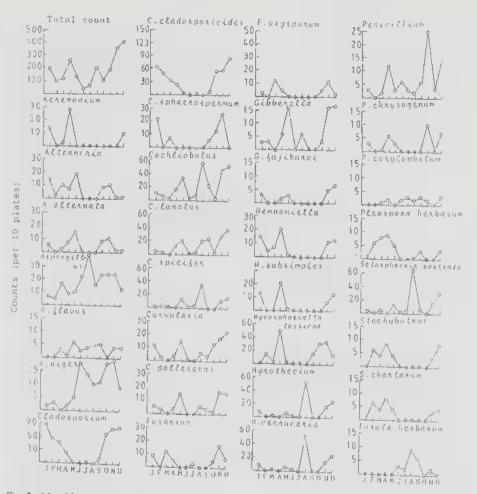



Fig. 2 - Monthly counts (per 10 plates) of common airborne fungi during january-December 1992 on glucose-Czapek's agar at 28°C.

Abdel-Hafez & El-Said (1989) and Abdel-Hafez et al. (1990) found that peaks of airborne fungi in the atmosphere of Wadi Qena over lentile fields were during March and October. In other areas of the world, peak numbers of airborne fungal species have been recorded at different times of the year. In New-Zealand, DiMenna (1955) observed peak numbers in summer, whereas in England, peaks occurred in summer and early autumn (Hudson, 1969; Pawsey and Heath, 1964). In India, Kumar and Gupta (1976) and Mishra and Kamal (1971) found the peak in winter.

Species of Alternaria, Aspergillus, Cladosporium, Cochliobolus, Curvularia, Mycosphaerella, Penicillium and Setosphaeria were frequently isolated. Their occurrence on plates of 1% glucose agar ranged between 91.7% (Aspergillus) to 54.2% (Alternaria and Mycosphaerella). Their contributions to total fungal counts varied from 20.5% (Cladosporium) to 2.9% (Penicillium). Counts of these genera irregularly fluctuated giving peaks in May, July, January, August, December, April, October and August, respectively (Fig. 2). Most of the preceding genera were almost dominant on plates of 1% glucose agar in the atmosphere of different Governorates in Egypt (Abdel-Hafez & El-Said, 1989 and Abdel-Hafez *et al.*, 1990). Also from the atmosphere of Kuwait (Moustafa & Kamel, 1976), Saudi Arabia (Abdel-Hafez, 1984 and Ali *et al.*,

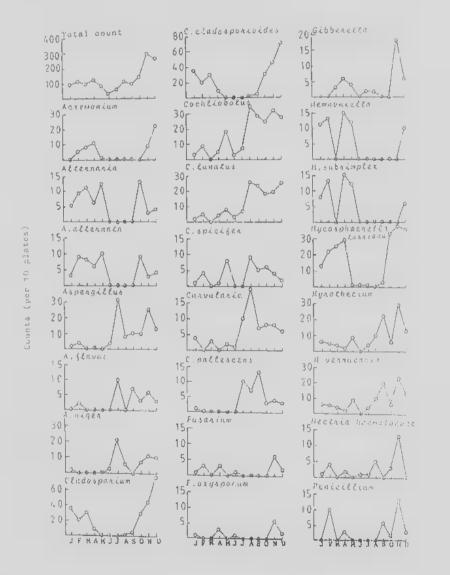



Fig. 3 - Monthly counts (per 10 plates) of common airborne fungi during January-December 1992 on cellulose-Czapek's agar at 28°C.

| Genera and species                            | Glucose |     |        | Cellulose |     |      |
|-----------------------------------------------|---------|-----|--------|-----------|-----|------|
|                                               | TC      | NC1 | OR     | тс        | NCI | OR   |
| Acremonium strictum W. Gams                   | 55      | 6   | М      | 56        | 10  | М    |
| Alternaria                                    | 80      | 13  | Н      | 63        | 13  | Н    |
| A. alternata (Fries) Keissler                 | 56      | 11  | М      | 52        | 13  | н    |
| A. citri Ellis & Pierce                       | 8       | 1   | R      |           |     |      |
| A. raphani Grosves & Skolko                   | 5       | 2   | R      |           |     |      |
| A, tenuissima (Kunze : Pers.) Wiltshire       | l ii    | 3   | L      | 11        | 5   | L    |
| Aspergillus                                   | 213     | 22  | Ĥ      | 108       | 15  | н    |
| A. candidus Link                              | 2       | 1   | R      | 100       | 1.5 | 1.5  |
| A. egyptiacus Moubasher & Moustafa            | 7       | 2   | R      |           |     |      |
| A. flavus Link                                | 35      | 12  | H      | 31        | 0   |      |
| *                                             | 19      | 5   | п<br>L | 21        | 9   | М    |
| A. fumigatus Fresenius                        |         | -   |        |           |     |      |
| A. niger Van Tieghem                          | 117     | 20  | H      | 60        | 12  | Н    |
| A. ochraceus Wilhelm                          | 6       | 4   | L      | 7         | 5   | L    |
| A. sydowii (Bainier & Sartory) Thom & Church  |         |     |        | 9         | 3   | L    |
| A. terreus Thom                               | 5       | 3   | L      | 1         | 1   | R    |
| A. terreus var. africanus Fennell & Raper     | 9       | 4   | L      |           |     |      |
| A. versicolar (Vuill.) Tiraboschi             | 13      | 5   | L      |           |     |      |
| Botryotrichum atrogriseum Van Beyma           | 12      | 3   | L      | 7         | 4   | J, L |
| Chaetomium globosum Kunze                     |         |     |        | 8         | 3   | L    |
| Cladosporium                                  | 460     | 17  | Н      | 247       | 16  |      |
| C. cladosporioides (Fres.) de Vries           | 385     | 17  | н      | 247       | 16  | н    |
| C. sphaerospermum Penzig                      | 75      | 1   | м      |           |     |      |
| Cochliobolus                                  | 270     | 19  | н      | 189       | 19  | н    |
| C. bicolor Paul & Parbery                     | 3       | 1   | R      | 107       |     | **   |
| C. hawaiiensis Alcorn, Trans,                 | 7       | 1   | R      | 8         | 1   | R    |
| C. intermedius Nelson                         | 2       | 1   | 8      | 2         | 1   | R    |
| C. lunatus Nelson & Haasis                    | 165     | 18  | H      | 139       | 18  | H    |
| C. setariae (Ito & Kurib) Drechsler ex Dastur |         |     | R      | 137       | 10  | п    |
|                                               | 1       | 1   |        |           | 1.0 |      |
| C. spicifer Nelson                            | 92      | 15  | Н      | 40        | 12  | H    |
| Coleophoma cylindrospora (Desm.) Hohn.        | 3       | 1   | R      | 19        | 3   | L    |
| Curvularia                                    | 96      | 15  | Н      | 68        | 14  | Н    |
| C. clavata Jain                               | 6       | 2   |        |           |     |      |
| C. lunata var. aeria (Batista, Lima           |         |     |        |           |     |      |
| & Vasconcebs) M.B. Ellis                      |         |     |        | 19        | 5   | L    |
| C. oryzae Bugnicourt                          | 3       | 1   | R      |           |     |      |
| C. ovoidea (Hiroe & Watan.) Muntanola         | 13      | 2   | R      | 15        | 5   | L    |
| C. pallescens Boedijn                         | 73      | 13  | Н      | 41        | 11  | Μ    |
| C. prasadii R.L. & B.L. Mathur                | 1       | 1   | R      | 3         | 2   | R    |
| Emericella nivea Wiley & Simmons              | 2       | 2   | R      |           |     |      |
| Epicoccum nigrum Link                         | 10      | 4   | L      |           |     |      |
| Fusarium                                      | 58      | 9   | M      | 16        | 8   | М    |
| F. nivale (Fr.) Ces.                          | 5       | í   | R      | 10        | Ŭ   | 4.44 |
| F. oxysporum Shelecht                         | 38      | 8   | M      | 13        | 7   | М    |
| a supprovide and a supervise                  | 3       | 1   | R      | 1.5       |     | 141  |

Table 1 - Total counts (TC calculated per 120 plates in 24 exposures of 1 min. each), number of cases of isolation (NCI, out of 24) and occurrence remarks (OR) of fungal genera and species recovered from the air on glucose- and cellulose-Czapek's agar at 28°C.

| Table | (continued) | ļ |
|-------|-------------|---|
|       |             |   |

| Table I (continued)                          |     | Glucose |      |      | Cellulose |     |  |
|----------------------------------------------|-----|---------|------|------|-----------|-----|--|
| Genera and species                           | TC  | NCI     | OR   | TC   | NCI       | OR  |  |
| F. semitectum Berk. & Rav.                   | 6   | 2       | R    |      |           |     |  |
| F. tricinctum (Corda) Sacc.                  | 6   | 2       | R    | 3    | 1         |     |  |
| Gibberella                                   | 70  | 11      | M    | 41   | 9         | М   |  |
| G. acuminata Wollenweber                     | 14  | 3       | L    | 7    | 2         | R   |  |
| G. avenacea R.J. Cook                        | 6   | 1       | R    |      |           |     |  |
| G. fujikuroi (Sawada) Ito                    | 20  | 7       | Μ    | 14   | 5         | L   |  |
| G. intricans Wollenweber                     | 19  | 5       | L    |      |           |     |  |
| G. zeae (Schwabe) Petch                      | 11  | 4       | L    | 20   | 4         | L   |  |
| Gilmaniella humicola Barrom                  | 1   |         |      | 2    | 1         | R   |  |
| Humicola grisea Traaen                       |     |         |      | 2    | 1         | R   |  |
| Macrophomina phaseolina (Tassi) Goid         | 3   | 2       | R    | 7    | 1         | R   |  |
| Melanopsamma pomiformis (Pers. ex Fr.) Sacc. | 3   | 1       | R    |      |           |     |  |
| Memnoniella                                  | 76  | 11      | M    | 61   | 10        | M   |  |
| M. echinata (Riv.) Galloway                  | 15  | 3       | L    | 7    | 2         | R   |  |
| M. subsimplex (Cooke) Deighton               | 56  | 9       | M    | 54   | 10        | M   |  |
| Mycosphaerella tassiana (Albertini &         | 1   |         |      |      |           |     |  |
| Schweinitz) Ditmer ex Steudel                | 162 | 13      | Н    | 202  | 16        | Н   |  |
| Myrothecium                                  | 112 | 10      | М    | 110  | 16        | H   |  |
| M. roridum Tode ex Fr.                       | 4   | L       | R    | 8    | 2         | R   |  |
| M. verrucaria (Alb. & Sch.) Dit.             | 108 | 10      | M    | 102  | 16        | Н   |  |
| Nectria haematococca Berkeley & Brown        | 16  | 4       | L    | 30   | 5         | E   |  |
| Neurospora crassa Shear & Dodge              | 1   |         |      | 2    | 1         | R   |  |
| Paecilomyces terricola (Miller, Giddens &    |     |         |      |      |           |     |  |
| Foster) Onions & Barron                      | 119 | 5       | L    | 48   | 5         | L   |  |
| Penicillium                                  | 66  | 14      | н    | 37   | 8         | М   |  |
| P. albidum Sopp                              | 2   | 1       | R    |      |           |     |  |
| P. chrysogenum Thom                          | 23  | 7       | M    | 13   | 4         | L   |  |
| P. citrinum Thom                             | 6   | 2       | R    | 1    |           |     |  |
| P. corylophilum Dierckx                      | 18  |         | M    |      |           |     |  |
| P. duclauxi Delacroix                        | 2   | 1       | R    |      |           |     |  |
| P. funiculosum Thom                          | 7   | 4       | L    |      |           |     |  |
| P. puberulum Bainier                         | 8   | 2       | R    | 24   | 5         | L   |  |
| Phoma                                        | 28  | 5       | L    | 18   | 5         | Ē   |  |
| P. glomerata (Corda) Wollenweber &           | 20  | 2       | L    | 1 10 | -         |     |  |
| Hochapfel                                    | 26  | 4       | L    | 14   | 5         | L   |  |
| P. humicola Gilman & Abbott                  | 2   | 1       | R    | 4    | 3         | Ľ   |  |
| Pleospora herbarum (Fr.) Rabenh. ex Ces      | -   | *       |      | 1    |           | -   |  |
| & de Not.                                    | 35  | 5       | L    |      |           |     |  |
| Rhizopus stolonifer (Ehrenb.) Lind.          | 9   | 2       | R    | •    |           |     |  |
|                                              | 2   | 1       | R    | 1    |           |     |  |
| Scolecobasidium variabile Barron & Busch     | 9   | 4       | L    | 8    | 4         | L   |  |
| Scopulariopsis                               | 9   | 4       | L    | l °  | *         | A., |  |
| S. brevicaulis (Sacc.) Bainier               | 7   | 4       | سط   | 8    | 4         | L   |  |
| S. brumptii Salvanet-Duval                   |     |         |      | 3    | 4         | R   |  |
| Scytalidium lignicola Pesante                | 147 | 16      | E.F. | -    | 5         | L   |  |
| Setosphaeria rostrata Leonard                | 147 | 16      | H    | 70   | 5<br>5    | L   |  |
| Stachybotrys                                 | 33  | 5       | L    | 17   | 5         | L   |  |
| S. chartarum (Ehrenb. : Lindt) Hughes        | 29  | 5       | L    | 17   |           | L   |  |

|                                             | Glucose     |     |    | Cellulose   |     |    |
|---------------------------------------------|-------------|-----|----|-------------|-----|----|
| Genera and species                          | TC          | NCL | OR | TC          | NCI | OR |
| S. parvispora Hughes                        | 4           | 1   | R  |             |     |    |
| Talaromyces flavus (Klöcker) Stolk & Samson |             |     |    | 4           | 10  | R  |
| Torula herbarum (Pers.) Link                | 23          | 5   | L  |             |     |    |
| Trichoderma viride Pers, ex S.F. Gray       | 4           | 1   | R  | 1           | 1   | R  |
| Trichothecium roseum (Pers.) Link : Gray    | 3           | 1   | R  |             |     |    |
| Verticillium lateritium Berkeley            | 57          | 5   | L  | 30          | 4   | L  |
| Gross total count                           | 2240        |     |    | 1474        |     |    |
| Number of genera = 38                       | 32          |     |    | 29          |     |    |
| Number of species = $78 + 2$ var.           | 70 + 1 var. |     |    | 46 + 1 var. |     |    |

#### Table I (continued)

Occurrence remarks: H = high occurrence, isolated from 12-24 cases (out of 24); M = moderate occurrence from 6-11 cases; L = low occurrence, from 3-5 cases; R = rare occurrence, from 1-2 cases.

1977), as well as from the air of different countries (DiMenna, 1955; Hudson, 1969; Pawsey & Heath, 1964; Mishra & Kamal, 1971; Kumar & Gupta, 1976 and Banerjee et al., 1987). Alternaria alternata, Aspergillus flavus, A. niger, Cladosporium cladosporioides, C. sphaerospermum, Cochliobolus lunatus, C. spicifer, Curvularia pallescens, Mycosphaerella tassiana, Penicillium chrysogenum, P. corylophilum and Setosphaeria rostrata proved to be most prevalent fungi in the atmosphere of banana field. They were encountered in 29.2-83.3% of total exposures matching 0.8-17.2% of total catch of airborne species. Peaks for these species were recorded at different periods of the year (Fig. 2). These fungi were also common in the atmosphere of different parts of the world as recorded and reported as cosmopolitan by several researchers. Remaining genera and species were isolated in low or rare frequencies of occurrence (Table 1).

## Cellulose-decomposing fungi recovered on cellulose-Czapek's agar:

46 species and species variety which belong to 32 genera were collected on plates of cellulose-Czapek's agar at 28°C (Table 1). Total counts of these fungi on 240 plates were 1474 colonies. Monthly counts of fungi irregularly fluctuations giving peaks in November (Fig. 3). Previously Abdel-Hafez *et al.* (1990) had found peaks of airborne fungi over lentile field were in March. Also, El-Said (1990) obtained peaks of fungal spores from Wadi Abbadi in March. Results obtained on cellulose-Czapek's agar were basically similar to those on 1% glucose agar with most common genera being: *Alternaria* (2 species), *Aspergillus* (5), *Cladosporium* (1), *Cochliobolus* (4), *Curvularia* (3+1 variety), *Mycosphaerella* (1) and *Myrothecium* (2). Their occurrence on plates of 1% cellulose-Czapek's agar ranged between 79.2% (*Cochliobolus*) to 54.2% (*Alternaria*). Their contributions to total fungal counts varied from 16.8% (*Cladosporium*) to 4.3% (*Alternaria*). Respective counts irregularly fluctuated giving maxima in October, July, December, August, August, November and November (Fig. 3). Most common observed species were: Alternaria alternata, Aspergillus flavus, A. niger, Cladosporium cladosporioides, Cochliobolus lunatus, C. spicifer, Curvularia pallescens, Mycosphaerella tassiana and Myrothecium verrucaria. They were encountered in 37.5-75% of numbers of exposures matching 2.1-16.8% of total fungi. Peaks for these species were recorded at different periods of the year (Fig. 3). Most of these genera and species were also common in the atmosphere of different Governorates in Egypt on 1% cellulose-Czapek's agar (Abdel-Sater, 1990; El-Said, 1990 and Abdel-Hafez et al., 1990). The remaining genera and species developing on this medium were isolated in low or rare frequencies of occurrence (Table 1).

#### REFERENCES

- ABDEL-HAFEZ S.I.I., 1984 Survey of air-borne fungus spores at Taif, Saudi Arabia. Mycopathologia 88: 39-44.
- ABDEL-HAFEZ S.I.I. & EL-SAID, A.H.M., 1989 Seasonal variations of airborne fungi in Wadi Qena, Eastern Desert, Egypt. Grana 28: 193-203.
- ABDEL-HAFEZ S.I.I. & EL-SAID A.H.M., 1989 Seasonal variations of airborne fungi in Wadi Qena, Eastern Desert, Egypt. Grana 28: 193-203.
- ABDEL-HAFEZ A.I., ABDEL-HAFEZ S.I.I., MOAWED S.M. & AHMED T.A.M., 1990 Seasonal fluctuations of soil and airborne fungi at Qena, Upper Egypt. Bull. Fac. Sci. Assiut Univ. 19 (2): 47-63.
- ABDEL-SATER M.A., 1990 Studies on the mycoflora of the new valley area, Western Desert, Egypt. Ph. D. Thesis. Bot. Dept., Fac. Sci., Assiut Univ., Egyp.
- AL-DOORY Y., 1980 Laboratory medical mycology, Lea and Febiger Philadelphia Kimpton Publisher, London (p. 410).
- ALI M.I., ABU-ZINADA A.H. & EL-MASHHARAWI Z., 1977 Survey of airborne mould flora at Riyadh, Saudi Arabia. Bull. Fac. Sci., Riyadh Univ. 8: 215-228.
- BANERJEE U.C., WEBER P., RUFFIN J. & BANERJEE S., 1987 Airborne fungi survey of some residences in Durham, North Carolina, USA. Grana 26: 103-108.
- DI MENNA M.E., 1955 A qualitative study of air-borne fungus spores in Dundin, N.Z. Trans. Brit. Mycol. Soc. 38: 119-129.
- EL-SAID A.H., 1990 Studies on the mycoflora of Idfu-Marsa Alam road area, Eastern Desert, Egypt. Ph. D. Thesis. Bot. Dept., Fac. Sci., Qena, Assiut Univ., Egypt (p. 408).

HUDSON H.J., 1969 - Aspergilli in the air-spora at Cambridge. Trans. Brit. Mycol. Soc. 52: 153-159.

- KUMAR R. & GUPTA J.S., 1976 Seasonal and diurnal variations in the air-spora over a potato field, 11. Indian phytopathol. 29: 181-185.
- LIGHTHART B., 1984 Microbial aerosol: Estimated contribution of combine harvesting to an airshed. Appl. Environ. Microbiol. 47: 430-432.
- MAZEN M.B. & SHABAN G.M., 1983 Air-borne fungi of wheat field in Egypt. Qatar Univ. Sci. Buil, 3: 131-139.
- MISHRA R.R. & KAMAL S., 1971 Aeromycology of Gorakhpur. 111. Seasonal variation in the fungal spora. Mycopathol. Mycol. Appl. 45: 301-310.
- MOUBASHER A.H. & MOUSTAFA A.F., 1974 Air-borne fungi at Assiut, Egypt. Egypt. J. Bot. 17: 135-149.
- MOUBASHER A.H., ABDEL-FATTAH H.M. & SWELIM M.A., 1981 Studies on air-borne fungi at Qena. 1. Seasonal fluctuations. Z. Allg. Mkrobiol. 21: 241-253.

- MOUBASHER A.H., ABDEL-HAFEZ S.I.I. and EL-MAGHRABY O.M.O., 1988 Seasonal fluctuations of soilborne and airborne fungi of Wadi Bir-El-Ain in the Eastern desert of Egypt. *Nat. Monspel. Ser. Bot.* O (52): 57-70.
- MOUSTAFA A.F. & KAMEL S., 1976 A study of fungal populations in the atmosphere of Kuwait. Mycopathologia 59: 29-35.
- PAWSEY R.G. & HEATH L.A., 1964 An investigation of spore population of air IN Nottingham. 1. The result of petri-dish trapping over one year. Trans. Brit. Mycol. Soc. 41: 351-355.
- SMITH N.R. & DAWSON V.I., 1944 The bacteriostatic action of rose-bengal in media used for plate count of soil fungi. Soil Sci. 58: 467-471.
- VITTAL B.P.R. & KRISHNAMOORTHI K., 1981 Air-spora of an agricultural farm in Madras India. Grana 20: 61-64.
- VITTAL B.P.R. & KRISHNAMOORTHI K., 1988 A census of airborne mould spres in the atmosphere of the city Madras, India. Ann. Allergy 60: 99-101.
- YOUSSEF Y.A. & KARAM EL-DIN A., 1988 Air-borne spores of opportunistic fungi in the atmosphere of Cairo, Egypt. 1. Mould Fungi. Grana 27: 89-92.